Abstract

Vapor-phase hydrogenation of levulinic acid (LA) to ɤ-valerolactone (GVL) was investigated over supported-type Cu-Ni/Al2O3 catalysts in H2 flow at 250 °C. Ni-rich Cu-Ni/Al2O3 catalysts, typically 6 wt.% Cu and 14 wt.% Ni, achieved high LA conversion with high stability and high GVL selectivity. XRD analyses of the catalysts clarified that Cu-Ni alloy nanoparticles were produced on the alumina support by forming a solid solution of CuO-NiO. The Cu-Ni/Al2O3 catalyst showed the highest GVL productivity of 11.0 kg kgcat−1 h−1 with a selectivity of 98.6 %, although the catalyst was gradually deactivated with time on stream under high space velocity conditions. In the characterization of the used catalysts, the catalyst deactivation would be caused by the sintering of active Cu-Ni alloy nanoparticles, which could be induced by the cycle of the oxidation with H2O and the reduction with H2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.