Abstract
While methanol carbonylation has been extensively studied, higher alcohol carbonylation has received relatively little attention, even though, for example, ethanol carbonylation could be a useful route for the production of propionates. Here we use Rh/Na13X to investigate the vapor phase carbonylation of ethanol with an ethyl iodide co-feed. In the base case, the catalyst is ∼40% selective to propionates, with the remainder forming ethylene and diethyl ether. Deposition of additional alkali can increase selectivities to ∼60%. Isotopic labeling of ethyl iodide demonstrates reversible formation of ethyl iodide from ethanol, and that preferential incorporation of ethyl iodide initiates the Rh-catalyzed carbonylation cycle. XPS and in situ X-ray absorption spectroscopy are consistent an active anionic RhI iodide species at a zeolite exchange site. This proposed structure and the attendant catalytic reaction network are directly analogous to those of classic solution-phase Rh catalysts and other supported Rh catalysts. However, important differences are noted in the reaction orders and apparent activation barrier, which suggest that the rate of ethyl iodide formation is overall rate limiting under these conditions and for this catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.