Abstract

Lithium-sulfur (Li-S) batteries hold great promise to meet the formidable energy storage requirements of future electrical vehicles but are prohibited from practical implementation by their severe capacity fading and the risks imposed by Li metal anodes. Nanoscale Li(2)S offers the possibility to overcome these challenges, but no synthetic technique exists for fine-tailoring Li(2)S at the nanoscale. Herein we report a vapor-phase atomic layer deposition (ALD) method for the atomic-scale-controllable synthesis of Li(2)S. Besides a comprehensive investigation of the ALD Li(2)S growth mechanism, we further describe the high performance of the resulting amorphous Li(2)S nanofilms as cathodes in Li-S batteries, achieving a stable capacity of ∼ 800 mA · h/g, nearly 100% Coulombic efficiency, and excellent rate capability. Nanoscale Li(2)S holds great potential for both bulk-type and thin-film high-energy Li-S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.