Abstract

Vapor−liquid equilibrium (VLE) in trickle-bed hydroprocessing reactors can significantly change the fluid hydrodynamics and the distribution of reacting species in both the vapor and liquid phases and, ultimately, change the reactor performance. VLE is especially important to pilot-plant studies in which ideal operating regimes (plug flow, full catalyst wetting, absence of reactor wall effects, etc.) are desired to generate reliable, reproducible, and representative data for commercial scale-up and kinetics studies. In this article, we report VLE flash experiments that were conducted in a continuous-flow unit with hydrogen and various petroleum middle distillates under typical hydrotreating conditions to study the relative distribution of the oil in the two phases. The experimental data were further used to evaluate the interaction coefficients, required to perform VLE flash calculations, between hydrogen and hydrocarbon boiling-point pseudocomponents. Furthermore, flow hydrodynamics were predicted in a pilot-plant trickle-bed reactor for hydrotreating two different middle distillate feeds to provide a mapping of operating conditions under which the desired operating regimes could be maintained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.