Abstract

In this work a numerically tractable expression for the interaction potential between two point hexadecapoles with octahedral symmetry and a molecular-based equation of state derived by perturbation theory for hexadecapolar fluids are presented. The polar system is modeled by square-well particles with a point hexadecapole with octahedral symmetry at their centers. This equation of state is analytical in the state variables and in the potential parameters and allows us to study the effects of the hexadecapolar moment strength on the thermodynamic properties and liquid-vapor phase diagram. The equation presented here is applied to the thermodynamics of sulfur hexafluoride and gives very good predictions for the saturation pressures and the vapor-liquid phase diagram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.