Abstract
The solubility of CO2 in aqueous solutions, 18 mass %, 25 mass %, and 30 mass % (2.0 M, 2.8 M, and 3.4 M), of 2-amino-2-methyl-1-propanol (AMP) has been measured over a temperature range of (303 to 323) K and a partial pressure range of (1 to 100) kPa. In this work, the modified Clegg−Pitzer equation is used to correlate and predict the vapor−liquid equilibria of the (CO2 + AMP + H2O) system. The model predicted results are in good agreement with the experimental vapor−liquid equilibrium (VLE) measurements in this work. A nontraditional optimization algorithm, simulated annealing (SA), has been used for the parameter estimation. It is observed that adopting the SA technique for the estimation of interaction parameters results in better VLE prediction accuracy than using the traditional deterministic techniques, such as Levenberg−Marquardt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.