Abstract

The role of cohesive r-4 interactions on the existence of a vapor phase and the formation of vapor-liquid equilibria is investigated by performing molecular simulations for the n-4 potential. The cohesive r-4 interactions delay the emergence of a vapor phase until very high temperatures. The critical temperature is up to 5 times higher than normal fluids, as represented by the Lennard-Jones potential. The greatest overall influence on vapor-liquid equilibria is observed for the 5-4 potential, which is the lowest repulsive limit of the potential. Increasing n initially mitigates the influence of r-4 interactions, but the moderating influence declines for n > 12. A relationship is reported between the critical temperature and the Boyle temperature, which allows the critical temperature to be determined for a given n value. The n-4 potential could provide valuable insight into the behavior of non-conventional materials with both very low vapor pressures at elevated temperatures and highly dipolar interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.