Abstract

Liquid manipulation on solid surfaces has attracted a lot of attention for liquid collection and droplet-based microfluidics. However, manipulation strategies mainly depend on chemical modification and artificial structures. Here, we demonstrate a feasible and general strategy based on the self-shrinkage of the droplet induced via specific vapors to efficiently collect liquids and flexibly carry out droplet-based reactions. The vapor-induced self-shrinkage is driven by Marangoni flow originating from molecular adsorption and diffusion. Under a specific vapor environment, the self-shrinking droplet exhibits unique features including reversible responsiveness, high mobility, and autocoalescence. Accordingly, by building a specific vapor environment, the thin liquid films and random liquid films on superlyophilic substrates can be recovered with a collection rate of more than 95%. Moreover, the vapor system can be used to construct a high-efficiency chemical reaction device. The findings and profound understandings are significant for the development of the liquid collection and droplet-based microfluidics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.