Abstract

This article investigates the contribution of water vapor convection to heat transfer through gypsum plasterboard exposed to fire. The vapor is generated as a product of the endothermic dehydration reaction in gypsum, and it is then expelled from the material through the pore network by its own pressure, thereby taking part in the heat transfer from the fire-exposed to the cold surface of plasterboard. The gas permeability values of plasterboard core and paper liner are obtained experimentally. The results of simulations are validated against the temperature measurement data obtained for two types of commercial plasterboard tested in the standard fire ISO 834. It is shown that vapor convection plays an essential role in heat transfer through plasterboard during the initial stage of fire. The amount of condensate developing in the pores of the material is found to be low, which allows it to be neglected in engineering calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.