Abstract
An analytical expression is obtained for the optimum curvature of a nonisothermal fin featuring stationary condensation of motionless vapor under the conditions of a significant influence of the surface tension on the motion of a condensed liquid. An algorithm is proposed and realized that finds the optimum surface shape for an unknown temperature distribution in the nonisothermal fin. The algorithm is based on a joint solution of the equations of heat conduction and condensed liquid film flow on the fin surface. Allowance for the thermal conductivity of a material in optimization of the fin shape provides for a significant increase in the condensate outflow as compared to the case of the optimum isothermal fin shape and a finite thermal conductivity of the material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.