Abstract

We propose a new mechanism for bubble nucleation triggered by the rubbing of solid surfaces immersed in a liquid, in which the fluid molecules squeezed between the solids are released with high kinetic energy into the bulk of the liquid, resulting in the nucleation of a vapor bubble. Molecular dynamics simulations with a superheated Lennard-Jones fluid are used to evidence this mechanism. Nucleation is observed at the release of the squeezed molecules, for squeezing pressures above a threshold value and for all the relative velocities between the solids that we investigate. We show that the total kinetic energy of the released molecules for a single release event is proportional to the number of molecules released, which depends on the squeezing pressure, but is independent of the velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.