Abstract

Nearly 200 million people are infected by hepatitis C virus (HCV) worldwide. For replicating the HCV genome, the membrane-associated machinery needs to be formed by both HCV non-structural proteins (including NS5B) and human host factors such as VAPB. Recently, the 99-residue VAPC, a splicing variant of VAPB, was demonstrated to inhibit HCV replication via binding to NS5B, thus acting as an endogenous inhibitor of HCV infection. So far, the structure of VAPC remains unknown, and its interaction with NS5B has not been biophysically characterized. In this study, we conducted extensive CD and NMR investigations on VAPC which led to several striking findings: 1) although the N-terminal 70 residues are identical in VAPC and VAPB, they constitute the characteristic β-barrel MSP fold in VAPB, while VAPC is entirely unstructured in solution, only with helical-like conformations weakly populated. 2) VAPC is indeed capable of binding to NS5B, with an average dissociation constant (Kd) of ∼20 µM. Intriguingly, VAPC remains dynamic even in the complex, suggesting that the VAPC-NS5B is a “fuzzy complex”. 3) NMR mapping revealed that the major binding region for NS5B is located over the C-terminal half of VAPC, which is composed of three discrete clusters, of which only the first contains the region identical in VAPC and VAPB. The second region containing ∼12 residues appears to play a key role in binding since mutation of 4 residues within this region leads to almost complete loss of the binding activity. 4) A 14-residue mimetic, VAPC-14 containing the second region, only has a ∼3-fold reduction of the affinity. Our study not only provides critical insights into how a human factor mediates the formation of the HCV replication machinery, but also leads to design of VAPC-14 which may be further used to explore the function of VAPC and to develop anti-HCV molecules.

Highlights

  • Hepatitis C virus (HCV), first discovered in 1989, infects about 200 million people worldwide [1,2,3], and is a leading risk factor for the development of severe chronic liver diseases including cirrhosis and hepatocellular carcinoma [4]

  • VAPC is Highly-unstructured The recombinant VAPC protein was overexpressed as a Histagged fusion protein in E. coli, and subsequently purified by Ni2+affinity chromatography under native conditions

  • NS5B at molar ratios of 1:0.5; 1:1 and 1:2.5 (VAPC-14:NS5B). (d) Experimental and fitted values are shown for VAPC-14 residues with significant changes of the integrated 1H and 15N chemical shifts

Read more

Summary

Introduction

Hepatitis C virus (HCV), first discovered in 1989, infects about 200 million people worldwide [1,2,3], and is a leading risk factor for the development of severe chronic liver diseases including cirrhosis and hepatocellular carcinoma [4]. HCV is a member of the Flaviviridae family of enveloped, positive-stranded RNA viruses, and has a genome of approximately 9.6 kb encoding a single polyprotein of ,3,000 amino acids, which is subsequently processed into 10 individual proteins by viral and cellular proteases [5,6,7,8,9]. The membrane-associated machinery copies the RNA genome into a negative-strand intermediate, which is used to generate additional positive-stranded RNAs for subsequent rounds of translation and packaging into virus particles. HCV replication is initiated immediately after translation and processing of the viral protein, and all HCV gene products remain associated with intracellular membranes [11,12,13,14,15,16,17]. Identities of the host factors and detailed interactions among them are poorly understood, HCV nonstructural proteins including NS3, NS4A, NS4B, NS5A, and NS5B have been characterized to be the key components of the replication machinery

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.