Abstract

We show that the compactly supported cohomology of Shimura varieties of Hodge type of infinite \Gamma_1(p^\infty) -level (defined with respect to a Borel subgroup) vanishes above the middle degree, under the assumption that the group of the Shimura datum splits at p . This generalizes and strengthens the vanishing result proved in [A. Caraiani et al., Compos. Math. 156 (2020)]. As an application of this vanishing theorem, we prove a result on the codimensions of ordinary completed homology for the same groups, analogous to conjectures of Calegari–Emerton for completed (Borel–Moore) homology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.