Abstract

Abstract. Lane Detection is a critical component of an autonomous driving system that can be integrated alongside with High-definition (HD) map to improve accuracy and reliability of the system. Typically, lane detection is achieved using computer vision algorithms such as edge detection and Hough transform, deep learning-based algorithms, or motion-based algorithms to detect and track the lanes on the road. However, these approaches can contain incorrectly detected line segments with outliers. To address these issues, we proposed a vanishing point aided lane detection method that utilizes both camera and LiDAR sensors, and then employs a RANSAC-based post-processing method to remove potential outliers to improve the accuracy of the detected lanes. We evaluated this method on four datasets provided from the KITTI Benchmark Suite and achieved a total precision of 87%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.