Abstract

We prove that the first reduced cohomology with values in a mixing L p -representation, 1<p<∞, vanishes for a class of amenable groups including connected amenable Lie groups. In particular this solves for this class of amenable groups a conjecture of Gromov saying that every finitely generated amenable group has no first reduced ℓ p -cohomology. As a byproduct, we prove a conjecture by Pansu. Namely, the first reduced L p -cohomology on homogeneous, closed at infinity, Riemannian manifolds vanishes. We also prove that a Gromov hyperbolic geodesic metric measure space with bounded geometry admitting a bi-Lipschitz embedded 3-regular tree has non-trivial first reduced L p -cohomology for large enough p. Combining our results with those of Pansu, we characterize Gromov hyperbolic homogeneous manifolds: these are the ones having non-zero first reduced L p -cohomology for some 1<p<∞.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.