Abstract

AbstractThe higher order degrees are Alexander‐type invariants of complements to an affine plane curve. In this paper, we characterize the vanishing of such invariants for a curve C given as a transversal union of plane curves and in terms of the finiteness and the vanishing properties of the invariants of and , and whether or not they are irreducible. As a consequence, we prove that the multivariable Alexander polynomial is a power of , and we characterize when in terms of the defining equations of and . Our results impose obstructions on the class of groups that can be realized as fundamental groups of complements of a transversal union of curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.