Abstract

Based on analyzing the measurement model of binocular vision sensor, we proposed a new flexible calibration method for binocular vision sensor using a planar target with several parallel lines. It only requires the sensor to observe the planar target at a few (at least two) different orientations. Relying on vanishing feature constraints and spacing constraints of parallel lines, linear method and nonlinear optimization are combined to estimate the structure parameters of binocular vision sensor. Linear method achieves the separation of the rotation matrix and translation vector which reduces the complexity of computation; Nonlinear algorithm ensures the calibration results for the global optimization. Towards the factors that affect the accuracy of the calibration, theoretical analysis and computer simulation are carried out respectively consequence in qualitative analysis and quantitative result. Real data shows that the accuracy of the proposed calibration method is about 0.040mm with the working distance of 800mm and the view field of 300 × 300mm. The comparison with Bougust toolbox and the method based on known length indicates that the proposed calibration method is precise and is efficient and convenient as its simple calculation and easy operation, especially for onsite calibration and self-calibration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call