Abstract

Vanin-1 is a membrane-anchored pantetheinase highly expressed in the gut and liver. It hydrolyzes pantetheine to pantothenic acid (vitamin B5) and the low-molecular-weight thiol cysteamine. The latter is believed to be a key regulating factor of several essential metabolic pathways, acting through sulfhydryl-disulfide exchange reactions between sulfhydryl groups of the enzymes and the oxidized form, cystamine. Its physiological importance remains to be elucidated, however. To explore this point, we developed Vanin-1–deficient mice that lack free cysteamine. We examined the susceptibility of deficient mice to intestinal inflammation, either acute (NSAID administration) or chronic (Schistosoma infection). We found that Vanin-1–/– mice better controlled inflammatory reaction and intestinal injury in both experiments. This protection was associated with increased γ-glutamylcysteine synthetase activity and increased stores of reduced glutathione, as well as reduced inflammatory cell activation in inflamed tissues. Oral administration of cystamine reversed all aspects of the deficient phenotype. These findings suggest that one cysteamine function is to upregulate inflammation. Consequently, the pantetheinase activity of Vanin-1 molecule could be a target for a new anti-inflammatory strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.