Abstract

Immunohistochemistry for vanilloid receptor 1-like receptor (VRL-1), a candidate transducer for high-threshold noxious heat, was performed on rat trigeminal primary sensory neurons. The immunoreactivity was detected in 14% of the trigeminal ganglion cell bodies, while the neurons in the mesencephalic trigeminal tract nucleus were almost devoid of it (0.5%). The immunoreactive neurons in the trigeminal ganglion were mostly of medium to large size (mean±S.D. of 956±376 μm 2). Nerve bundles in the tooth pulp, periodontal ligament, facial skin and oral mucosa contained VRL-1-positive smooth nerve fibers. The immunoreactivity could not be traced to the isolated nerve fibers, except in the tooth pulp. In the brainstem trigeminal nuclear complex, a notable concentration of the immunoreactivity was seen in laminae I and II of the medullary dorsal horn. Thirty-seven per cent of the trigeminal ganglion neurons retrogradely labeled from the tooth pulp exhibited VRL-1 immunoreactivity, while the immunoreactivity was detected in only 9% of those labeled from the skin. Co-expression of calcitonin gene-related peptide was common among the VRL-1-immunoreactive tooth pulp neurons (45%) and cutaneous neurons (25%). Moreover, as many as 41% of the VRL-1-immunoreactive tooth pulp neurons co-expressed parvalbumin immunoreactivity. Parvalbumin immunoreactivity was never detected in the VRL-1-immunoreactive cutaneous neurons. From the findings of the present study, we propose that large primary neurons responding to high-threshold noxious heat are abundant in the tooth pulp, but not in the facial skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call