Abstract
Osteoarthritis (OA) is a frequently seen arthropathy that features cartilage loss and destruction. Vanillic acid (VA), is a well-known flavonoid, which possesses various pharmacological activities. However, the effects of Vanillic acid on articular cartilage destruction and the pathogenesis of OA remain unknown. The present study observed that VA attenuated OA progression in vivo and vitro. VA inhibited the expression of inflammation responses, including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), matrix metalloproteinases (MMPs) and aggrecanase −2(ADAMTS5). Moreover, the major markers of hypertrophic chondrocytes such as Collagen X, Runt related transcription factor 2 (Runx2) and Vascular endothelial growth factor (VEGFA) were also reduced by VA. In addition, the interleukin-1β (IL-1β) -stimulated collagen 2 and aggrecan destruction were suppressed by VA. Moreover, VA concentration -dependently inhibited IL-1β induced production of High-mobility group box 1 (HMGB1), a classic damage-associated molecular pattern (DAMP) molecule with strong pro-inflammatory effects in OA. Meanwhile, we revealed that VA suppressed the IL-1β induced activation of MAPK and PI3K/AKT/NF-κB pathways. In vivo, VA alleviated osteoarthritis progression in a rat OA model. Collectively, our results demonstrate that VA could potentially be a new candidate for OA therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.