Abstract
The receptor for advanced glycation end products (RAGE), a pattern recognition receptor signaling event, has been associated with several human illnesses, including neurodegenerative diseases, particularly in Alzheimer’s disease (AD). Vanillic acid (V.A), a flavoring agent, is a benzoic acid derivative having a broad range of biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. However, the underlying molecular mechanisms of V.A in exerting neuroprotection are not well investigated. The present study aims to explore the neuroprotective effects of V.A against lipopolysaccharides (LPS)-induced neuroinflammation, amyloidogenesis, synaptic/memory dysfunction, and neurodegeneration in mice brain. Behavioral tests and biochemical and immunofluorescence assays were applied. Our results indicated increased expression of RAGE and its downstream phospho-c-Jun n-terminal kinase (p-JNK) in the LPS-alone treated group, which was significantly reduced in the V.A + LPS co-treated group. We also found that systemic administration of LPS-injection induced glial cells (microglia and astrocytes) activation and significantly increased expression level of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB) and secretion of proinflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1 β (IL1-β), and cyclooxygenase (COX-2). However, V.A + LPS co-treatment significantly inhibited the LPS-induced activation of glial cells and neuroinflammatory mediators. Moreover, we also noted that V.A treatment significantly attenuated LPS-induced increases in the expression of AD markers, such as β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) and amyloid-β (Aβ). Furthermore, V.A treatment significantly reversed LPS-induced synaptic loss via enhancing the expression level of pre- and post-synaptic markers (PSD-95 and SYP), and improved memory performance in LPS-alone treated group. Taken together; we suggest that neuroprotective effects of V.A against LPS-induced neurotoxicity might be via inhibition of LPS/RAGE mediated JNK signaling pathway; and encourage future studies that V.A would be a potential neuroprotective and neurotherapeutic candidate in various neurological disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.