Abstract

Petri nets are a common method for modeling and simulation of systems biology application cases. Usually different Petri net concepts (e.g. discrete, hybrid, functional) are demanded depending on the purpose of the application cases. Modeling complex application cases requires a unification of those concepts, e.g. hybrid functional Petri nets (HFPN) and extended hybrid Petri nets (xHPN). Existing tools have certain limitations which motivated the extension of VANESA, an existing open-source editor for biological networks. The extension can be used to model, simulate, and visualize Petri nets based on the xHPN formalism. Moreover, it comprises additional functionality to support and help the user. Complex (kinetic) functions are syntactically analyzed and mathematically rendered. Based on syntax and given physical unit information, modeling errors are revealed. The numerical simulation is seamlessly integrated and executed in the background by the open-source simulation environment OpenModelica utilizing the Modelica library PNlib. Visualization of simulation results for places, transitions, and arcs are useful to investigate and understand the model and its dynamic behavior. The impact of single parameters can be revealed by comparing multiple simulation results. Simulation results, charts, and entire specification of the Petri net model as Latex file can be exported. All these features are shown in the demonstration case. The utilized Petri net formalism xHPN is fully specified and implemented in PNlib. This assures transparency, reliability, and comprehensible simulation results. Thus, the combination of VANESA and OpenModelica shape a unique open-source Petri net environment focusing on systems biology application cases. VANESA is available at: http://agbi.techfak.uni-bielefeld.de/vanesa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.