Abstract

Vane geometry is an important parameter affecting the lubrication conditions of hydraulic vane machines. A simple thermo-elasto-hydrodynamic lubrication (TEHL) model was used to calculate the friction between vane tip and cam-ring of the hydraulic vane machines. Effect of vane geometry and its dimensions on hydraulic vane machines was theoretically investigated. Navier-Stokes and energy equations were numerically solved using finite difference technique. Viscosity and density distributions were considered in the TEHL-model. Results show that vane geometry optimization is quite important to enhance lubrication conditions of hydraulic vane machines. The study shows that the straight vane geometry is the best choice for high pressure applications. At higher values, increasing of vane tip radius of curvature and vane thickness enhances lubrication conditions between vane tip and cam-ring. Vane tip radius of curvature and vane thickness should not be less than 2 mm and 1.5 mm respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call