Abstract

In this study, a new vancomycin (Van)-modified poly-l-lysine (PLL) magnetic bead (MB) technique was developed for isolation of gram-positive bacteria. The method combines magnetic separation with a multiplex PCR (mPCR) assay and gel electrophoresis for easy and rapid detection of Bacillus cereus. Vancomycin was used as a molecular ligand between the MB and the d-alanyl-d-alanine moieties on the cell wall surface of B. cereus. The PLL served as a flexible molecular tether between the MB and Van that reduced steric hindrance maintaining the biological activity of Van. The MB-PLL-Van capture nanoprobes exhibited excellent capture and isolation efficiency for B. cereus in spiked milk matrix samples without interference from the complex food matrix. The subsequent mPCR assay showed high specificity for the 4 target genes in B. cereus, the entFM, cesB, cer, and 16S rRNA genes, that were used to achieve efficient genotyping and detection. Under optimum conditions, the limit of detection reached 103 cfu/mL, with a dynamic range of detection at 103 to 107 cfu/mL in pure culture. Application of the MB-PLL-Van mediated mPCR assay for B. cereus in milk matrix samples achieved results similar to those of the pure culture. In addition, with a 6-h pre-enrichment of B. cereus that was spiked in milk matrix samples, the limit of detection reached 101 cfu/mL. The MB-PLL-Van mediated mPCR assay developed in this study could be used as a universal technology platform for the efficient enrichment and genotyping of gram-positive bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call