Abstract

In this study, we report a facile, reusable, and highly sensitive label-free impedance sensor for discriminating Gram-positive and Gram-negative bacteria. The impedance sensor was fabricated using gold interdigitated electrodes onto a tungsten oxide thin film. X-Ray diffraction confirmed the formation of polycrystalline tungsten oxide. Field emission scanning electron microscopy and atomic force microscopy revealed that tungsten oxide has a porous structure. Tungsten oxide was functionalized with vancomycin, a glycopeptide antibiotic known to have a specific interaction with the peptidoglycan layer of Gram-positive bacteria. Fourier transform infrared microscopy and scanning electron microscopy were employed to test the morphological coating of vancomycin on interdigitated electrodes/tungsten oxide sensor. The functionalized tungsten oxide sensor was highly efficient in the capture of Gram-positive bacteria. The impedance measurement was also sensitive to differentiate between viable and non-viable Gram-positive bacteria. Limit of detection 102 colony forming unit/ml, linear dynamic range 102–107 colony forming unit/ml under physiological conditions and reusable nature of this vancomycin coated impedance sensor provide a label-free strategy for quick, sensitive and highly selective detection of Gram-positive bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.