Abstract

BackgroundThe objective of this research was to prepare some Fe3O4@SiO2@Chitosan (CS) magnetic nanocomposites coupled with nisin, and vancomycin to evaluate their antibacterial efficacy under both in vitro and in vivo against the methicillin-resistant Staphylococcus. aureus (MRSA).MethodsIn this survey, the Fe3O4@SiO2 magnetic nanoparticles (MNPs) were constructed as a core and covered the surface of MNPs via crosslinking CS by glutaraldehyde as a shell, then functionalized with vancomycin and nisin to enhance the inhibitory effects of nanoparticles (NPs). X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS) techniques were then used to describe the nanostructures.ResultsBased on the XRD, and FE-SEM findings, the average size of the modified magnetic nanomaterials were estimated to be around 22–35 nm, and 34–47 nm, respectively. The vancomycin was conjugated in three polymer-drug ratios; 1:1, 2:1 and 3:1, with the percentages of 45.52%, 35.68%, and 24.4%, respectively. The polymer/drug ratio of 1:1 exhibited the slowest release rate of vancomycin from the Fe3O4@SiO2@CS-VANCO nanocomposites during 24 h, which was selected to examine their antimicrobial effects under in vivo conditions. The nisin was grafted onto the nanocomposites at around 73.2–87.2%. All the compounds resulted in a marked reduction in the bacterial burden (P-value < 0.05).ConclusionThe vancomycin-functionalized nanocomposites exhibited to be more efficient in eradicating the bacterial cells both in vitro and in vivo. These findings introduce a novel bacteriocin–metallic nanocomposite that can suppress the normal bacterial function on demand for the treatment of MRSA skin infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call