Abstract

Six dinuclear vanadium(V) complexes have been synthesized: NH4[(VO2)2((H)LH)] (NH4[1]), NH4[(VO2)2((t-Bu)LH)] (NH4[2]), NH4[(VO2)2((Cl)LH)] (NH4[3]), [(VO2)(VO)((H)LH)(CH3O)] (4), [(VO2)(VO)((t-Bu)LH)(C2H5O)] (5), and [(VO2)(VO)((Cl)LH)(CH3O)(CH3OH/H2O)] (6) (where (H)LH4 = 1,5-bis(2-hydroxybenzaldehyde)carbohydrazone, (t-Bu)LH4 = 1,5-bis(3,5-di-tert-butyl-2-hydroxybenzaldehyde)carbohydrazone, and (Cl)LH4 = 1,5-bis(3,5-dichloro-2-hydroxybenzaldehyde)carbohydrazone). The structures of NH4[1] and 4-6 have been determined by X-ray diffraction (XRD) analysis. In all complexes, the triply deprotonated ligand accommodates two V ions, using two different binding sites ONN and ONO separated by a diazine unit -N-N-. In two pockets of NH4[1], two identical VO2(+) entities are present, whereas, in those of 4-6, two different VO2(+) and VO(3+) are bound. The highest oxidation state of V ions was corroborated by X-ray data, indicating the presence of alkoxido ligand bound to VO(3+) in 4-6, charge density measurements on 4, magnetic susceptibility, NMR spectroscopy, spectroelectrochemistry, and density functional theory (DFT) calculations. All four complexes characterized by XRD form dimeric associates in the solid state, which, however, do not remain intact in solution. Compounds NH4[1], NH4[2], and 4-6 were applied as alternative selective homogeneous catalysts for the industrially significant oxidation of cyclohexane to cyclohexanol and cyclohexanone. The peroxidative (with tert-butyl hydroperoxide, TBHP) oxidation of cyclohexane was performed under solvent-free and additive-free conditions and under low-power microwave (MW) irradiation. Cyclohexanol and cyclohexanone were the only products obtained (high selectivity), after 1.5 h of MW irradiation. Theoretical calculations suggest a key mechanistic role played by the carbohydrazone ligand, which can undergo reduction, instead of the metal itself, to form an active reduced form of the catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.