Abstract

Carbon-coated monoliths with different degrees of mesoporosity have been prepared. This has been accomplished by coating cordierite monoliths with a blend of two polymers, viz. Furan resin and polyethylene glycol (PEG), in different proportions. Upon carbonization at 973 K the former yields a carbon coating while the latter pyrolizes generating mesoporosity. Additionally the carbon-coated monoliths were activated with CO2 to generate microporosity. Vanadium was impregnated in these carbon-coated monoliths by equilibrium adsorption using ammonium metavanadate as precursor and they were tested in the SCR of NO at low temperature. By increasing the amount of PEG, the mesopore volume increases in the range of narrow mesoporosity (2–5 nm). It was found that the more mesopore volume, the more oxygenated surface groups are formed. This turned out to be crucial for the deposition of vanadium in a dispersed fashion and also for the activity in the SCR of NO. On the contrary, the narrow microporosity (<0.7 nm) does not contribute to enhance the dispersion of the catalyst. The kinetic rate constants of the monolithic catalyst prepared are in the range of the most active catalyst reported in the literature for the SCR of NO at low temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.