Abstract

The past few years have brought renewed focus on the physics behind the class of materials characterized by long-range interactions and wide regions of low electron density, sparse matter. There is now much work on developing the appropriate algorithms and codes able to correctly describe this class of materials within a parameter-free quantum physical description. In particular, van der Waals (vdW) forces play a major role in building up material cohesion in sparse matter. This work presents an application to the vanadium pentoxide (V 2O 5) bulk structure of two versions of the vdW-DF method, a first-principles procedure for the inclusion of vdW interactions in the context of density functional theory (DFT). In addition to showing improvement compared to traditional semilocal calculations of DFT, we discuss the choice of various exchange functionals and point out issues that may arise when treating systems with large amounts of vacuum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.