Abstract
The partitioning of V between orthopyroxene-liquid and spinel-liquid has been investigated in synthetic and natural mafic and ultramafic compositions as a function of temperature and oxygen fugacity ( fO 2) at 100 kPa and in one experiment at higher pressure. The purpose of the experiments was to understand redox relationships for V in silicate melts with a view to deriving an empirical oxygen barometer for geochemically altered mafic and ultramafic magmas in the geologic record. Partitioning data for both orthopyroxene-liquid and spinel-liquid show profound changes at an fO 2 approximately 3 orders of magnitude below the nickel-nickel oxide (NNO) buffer, suggesting changes in the dominant valence state of V in silicate liquids from V 3+ to V 4+, near this fO 2. The results of the experiments on orthopyroxene-liquid are combined with published data for olivine-liquid and are applied to suites of mafic and ultramafic magmas that have equilibrated with a harzburgite residue in the mantle. The results show that Archean alumina-undepleted komatiites could have formed at fairly high oxygen fugacities, near ΔNNO ∼ 0, somewhat higher than Cretaceous komatiites and related picrites in the Caribbean region (between ΔNNO ∼ −1 to −3), and plume-related picrites from West Greenland (ΔNNO ∼ − 3). Picrites and boninites from convergent margins record the highest fO 2’s by this method, (ΔNNO = +1 to +2), consistent with other petrological estimates of their redox states. The approach developed in this study can thus provide estimates for the redox states of altered, mantle-derived magmas in the geological record, to which more conventional methods of oxygen barometry cannot be applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.