Abstract

Abstract The synthesis, chemistry, local structure and electrochemical properties of vanadium oxide xerogels and aerogels have much in common. The one difference in their respective synthesis routes, the means by which solvent is removed, has a significant influence on the resulting morphology. The high surface area, nanodimensional solid phase, short diffusion paths and interconnected mesoporosity of the aerogels exert a profound effect on their electrochemical properties. Our studies with V2O5 aerogels show that these materials offer the promise of achieving both high energy density and high power density because of a pseudocapacitive charge storage mechanism which develops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.