Abstract
Carbon-coated catalysts doped with tungsten and vanadia oxides with different V and W loadings have been prepared by the ionic exchange method and characterized. The surface, structure and composition have been investigated by XPS, Raman, N 2 sorption at 77 K, TPD-NH 3 and reactivity tests for the SCR of NO with NH 3 at low temperatures. Under reaction conditions, NO conversions were found to go through a maximum with vanadia surface coverage at approximately half a monolayer. The observed decrease in the SCR activity at higher vanadia loadings can be attributed to either a loss of dispersion or loss of textural properties. Maximum NO conversion is ascribed to the higher Brönsted proton acidity (V 4+) of the centres that decreases with increasing vanadia loadings up to 3 wt% loading due to the increase of V 4+/V 5+ ratio. Large amounts of tungsten (5%, w/w) upon or before addition of vanadia do not provide an enhancement of activity. The results indicate that W addition increases surface acidity leading to stronger Brönsted or even Lewis acid centre creation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.