Abstract

Vanadium pentoxide (V(2)O(5)) is a transition metal derived from the burning of petrochemicals that causes airway fibrosis and remodeling. Vanadium compounds activate many intracellular signaling pathways via the generation of hydrogen peroxide (H(2)O(2)) or other reactive oxygen species. In this study, we investigated the regulation of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in human lung fibroblasts after V(2)O(5) treatment. V(2)O(5)-induced HB-EGF mRNA expression was abolished by N-acetyl-l-cysteine, suggesting an oxidant-mediated effect. Exogenous H(2)O(2) (>10 microM) mimicked the effect of V(2)O(5) in upregulating HB-EGF expression. Fibroblasts spontaneously released low levels of H(2)O(2) (1-2 microM), and the addition of V(2)O(5) depleted the endogenous H(2)O(2) pool within minutes. V(2)O(5) caused a subsequent increase of H(2)O(2) into the culture medium at 12 h. However, the burst of V(2)O(5)-induced H(2)O(2) occurred after V(2)O(5)-induced HB-EGF mRNA expression at 3 h, indicating that the V(2)O(5)-stimulated H(2)O(2) burst did not mediate HB-EGF expression. Either V(2)O(5) or H(2)O(2) activated ERK-1/2 and p38 MAP kinase. Inhibitors of the ERK-1/2 pathway (PD-98059) or p38 MAP kinase (SB-203580) significantly reduced either V(2)O(5)- or H(2)O(2)-induced HB-EGF expression. These data indicate that vanadium upregulates HB-EGF via ERK and p38 MAP kinases. The induction of HB-EGF is not related to a burst of H(2)O(2) in V(2)O(5) treated cells, yet the action of V(2)O(5) in upregulating HB-EGF is oxidant dependent and could be due to the reaction of V(2)O(5) with endogenous H(2)O(2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.