Abstract
Transmission electron microscopy (TEM), X-ray diffractometry (XRD), in situ diffuse reflectance ultra violet – visible (UV–Vis) spectroscopy, and temperature-programmed reduction by hydrogen (H2-TPR) were used to identify the vanadia forms in vanadium-containing SBA-15 preparations (VOx/SBA-15). Wacker type supported Pd/VOx/SBA-15 catalysts were obtained by introducing Pd into VOx/SBA-15 samples using conventional impregnation method. The activity of the catalysts was tested in the gas phase partial oxidation of ethylene by O2 in the presence of H2O (Wacker oxidation). VOx/SBA-15 sample was obtained by micelle-templated synthesis using vanadium-containing synthesis gel. The vanadium became incorporated in the silica structure from the gel in near to atomic dispersion. This catalyst was quite active in ethylene oxidation to CO2 but had low Wacker activity. Isolated, polymeric and bulk vanadia species were identified in the VOx/SBA-15 prepared by wet impregnation/calcination method. The specific surface area of the sample was found to be smaller than that of the neat SBA-15 support because some pores were blocked by vanadia agglomerates. The corresponding Pd/VOx/SBA-15 catalyst showed high selectivity for acetaldehyde formation but the activity was relatively low due to low accessible active surface. A third VOx/SBA-15 sample was obtained by applying directed surface reaction between silanol groups of dehydrated SBA-15 and anhydrous solution of vanadyl acetylacetonate. Large number of accessible Pd/VOx sites were present in the corresponding Pd/VOx/SBA-15 catalyst. Latter catalyst induced ethylene oxidation to acetaldehyde with high yield at temperatures ≤160 °C and with good yield to acetic acid at temperatures ≥160 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.