Abstract

Vanadium-containing heterostructures consisting of an ultrathin magnetic film on the surface of a nonmagnetic topological insulator have been studied theoretically. A method has been demonstrated to control the Dirac point shift in the k space, which is a length measure of an exotic flat band appearing upon the formation of domain walls on the surface of antiferromagnetic topological insulator. The Dirac point shift is inversely proportional to the group velocity of electrons at the Dirac point and is proportional to the degree of localization of the topological state in the magnetic film. The shift is controlled by selecting a substrate with a certain work function. Particular systems have been proposed for the experimental study of flat band features in antiferromagnetic topological insulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call