Abstract

The Schiff bases H3dfmp(L)2 obtained by the condensation of 2,6-diformyl-4-methylphenol and hydrazones [L = isonicotinoylhydrazide (inh), nicotinoylhydrazide (nah) and benzoylhydrazide (bhz)] are prepared and characterized. By reaction of [V(IV)O(acac)2] and the H3dfmp(L)2 in methanol the V(IV)O-complexes [V(IV)O{Hdfmp(inh)2}(H2O)] (1), [V(IV)O{Hdfmp(nah)2}(H2O)] (2) and [V(IV)O{Hdfmp(bhz)2}(H2O)] (3) were obtained. Upon their aerial oxidation in methanol [V(V)O(OMe)(MeOH){Hdfmp(inh)2}] (4), [V(V)O(OMe)(MeOH){Hdfmp(nah)2}] (5) and [V(V)O(OMe)(MeOH){Hdfmp(bhz)2}] (6) were isolated. In the presence of KOH, oxidation of 1-3 results in the formation of [V(V)O2{H2dfmp(inh)2}]n·5H2O (7), K[V(V)O2{Hdfmp(nah)2}] (8) and K[V(V)O2{Hdfmp(bhz)2}] (9). All compounds are characterized in the solid state and in solution, namely by spectroscopic techniques (IR, UV-Vis, EPR, (1)H, (13)C and (51)V NMR), and DFT is also used to calculate the V(IV) hyperfine coupling constants of V(IV)-compounds and (51)V NMR chemical shifts of several V(V)-species and assign them to those formed in solution. Single crystal X-ray analysis of [V(V)O(OMe)(MeOH){Hdfmp(bhz)2}] (6) and [V(V)O2{H2dfmp(inh)2}]n·5H2O (7) confirm the coordination of the ligand in the dianionic (ONO(2-)) enolate tautomeric form, one of the hydrazide moieties remaining non-coordinated. In the case of 7 the free N(pyridine) atom of the inh moiety coordinates to the other vanadium center yielding a polynuclear complex in the solid state. It is also demonstrated that the V(V)O2-complexes are catalyst precursors in the oxidative bromination of styrene by H2O2, therefore acting as functional models of vanadium dependent haloperoxidases. Plausible intermediates involved in the catalytic process are established by UV-Vis, (51)V NMR and DFT studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call