Abstract

Cytosolic free Ca2+ plays important roles in the regulation of physiological processes in tracheal epithelial cells and is probably regulated by many ion-transporting ATPases in these cells. Therefore, the effect of vanadate was investigated to characterize microsomal ion-transporting ATPases. Dose response experiments showed that vanadate had a biphasic effect on the microsomal ATPase activity: a decrease at the vanadate concentration below 100 microM, and a steep decrease at the concentration above 100 microM. The dose response data were fitted to two sigmoidal functions, corresponding to a low-affinity vanadate-sensitive (LAVS) ATPase and a high-affinity vanadate-sensitive (HAVS) ATPase. In 45Ca2+ uptake experiments, both LAVS and HAVS ATPases mediated microsomal 45Ca2+ uptake. The LAVS ATPase was selectively sensitive to thapsigargin in both ATPase activity and 45Ca2+ uptake, suggesting that it is an ER/SR-type intracellular Ca2+-ATPase. Although the HAVS ATPase mediated one-fourth of microsomal 45Ca2+ uptake, its activity was not sensitive to thapsigargin. These results indicate that the activities of these two vanadate-sensitive ATPases are mediated by different enzymes, since thapsigargin only blocks the activity of LAVS ATPase. In conclusion, there are two types of vanadate-sensitive microsomal ATPases, and these ATPases mediate microsomal 45Ca2+ uptake in airway epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.