Abstract

The low-temperature orthorhombic (LTO) phase transition in La$_{2-x}$Sr$_x$CuO$_4$ can be interpreted as a dynamic Jahn-Teller effect, in which the degenerate electronic states are associated with the large densities of states at the two van Hove singularities. The equations describing this phase are strongly nonlinear. This paper illustrates some consequences of the nonlinearity, by presenting a rich variety of exact nonlinear wave solutions for the model. Of particular interest are soliton lattice solutions: arrays of domain walls separating regions of local low-temperature tetragonal (LTT) symmetry. These arrays have a {\it macroscopic} average symmetry higher than LTT. These lattices can display either orthorhombic (`orthons') or tetragonal (`tetrons') symmetry, and can serve as models for a microscopic description of the dynamic JT LTO and high-temperature tetragonal phases, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.