Abstract
VB-groupoids define a special class of Lie groupoids which carry a compatible linear structure. In this paper, we show that their differentiable cohomology admits a refinement by considering the complex of cochains which are k-homogeneous on the linear fiber. Our main result is a Van Est theorem for such cochains. We also work out two applications to the general theory of representations of Lie groupoids and algebroids. The case k=1 yields a Van Est map for representations up to homotopy on 2-term graded vector bundles. Arbitrary k-homogeneous cochains on suitable VB-groupoids lead to a novel Van Est theorem for differential forms on Lie groupoids with values in a representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.