Abstract

High-voltage phase transition constitutes the major barrier to accessing high energy density in layered cathodes. However, questions remain regarding the origin of phase transition, because the interlayer weak bonding features cannot get an accurate description by experiments. Here, we determined van der Waals (vdW) interaction (vdWi) in LixCoO2 via visualizing its electron density, elucidating the origin of O3─O1 phase transition. The charge around oxygen is distorted by the increasing Co─O covalency. The charge distortion causes the difference of vdW gap between O3 and O1 phases, verified by a gap corrected vdW equation. In a high charging state, excessive covalency breaks the vdW gap balance, driving the O3 phase toward a stable O1 one. This interpretation of vdWi-dominated phase transition can be applied to other layered materials, as shown by a map regarding degree of covalence. Last, we introduce the cationic potential to provide a solution for designing high-voltage layered cathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.