Abstract
Transition metal dichalcogenides are layered materials which are composed of transition metals and chalcogens of the group VIA in a 1:2 ratio. These layered materials have been extensively investigated over synthesis and optical and electrical properties for several decades. It can be insulators, semiconductors, or metals revealing all types of condensed matter properties from a magnetic lattice distorted to superconducting characteristics. Some of these also feature the topological manner. Instead of covering the semiconducting properties of transition metal dichalcogenides, which have been extensively revisited and reviewed elsewhere, here we present the structures of metallic transition metal dichalcogenides and their synthetic approaches for not only high-quality wafer-scale samples using conventional methods (e.g., chemical vapor transport, chemical vapor deposition) but also local small areas by a modification of the materials using Li intercalation, electron beam irradiation, light illumination, pressures, and strains. Some representative band structures of metallic transition metal dichalcogenides and their strong layer-dependence are reviewed and updated, both in theoretical calculations and experiments. In addition, we discuss the physical properties of metallic transition metal dichalcogenides such as periodic lattice distortion, magnetoresistance, superconductivity, topological insulator, and Weyl semimetal. Approaches to overcome current challenges related to these materials are also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.