Abstract

The van der Waals complex formed between diethyl disulfide (DEDS) and an argon atom was investigated by pulsed-jet Fourier transform microwave spectroscopy in conjunction with quantum chemical computations. One set of transition lines belonging to the configuration of the global potential energy minimum was measured and assigned. The rotational constants A, B, and C were accurately determined to be 1262.5758(1) MHz, 845.402 12(9) MHz, and 574.006 38(8) MHz, respectively. The distance between the argon atom and the center of mass of the DEDS subunit is 4.075(16) Å. Quantum theory of atoms in molecules and non-covalent interaction analyses reveal that the interactions take place between the argon atom and four sites of the DEDS subunit. Furthermore, the usage of the energy decomposition analysis approach provides further understanding of the characteristics of the van der Waals interactions. Additionally, ab initio calculations and symmetry-adapted perturbation theory analysis of the binary complexes of DEDS with He, Ne, Kr, and Xe atoms were carried out to get further insight into the characteristics of the van der Waal interactions of the disulfide bond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.