Abstract

We investigated intermolecular interactions in weakly bonded molecular assemblies from first principles, by combining exact exchange energies (EXX) with correlation energies defined by the adiabatic connection fluctuation-dissipation theorem, within the random phase approximation (RPA). We considered three different types of molecular systems: the benzene crystal, the methane crystal, and self-assembled monolayers of phenylenediisocyanide, which involve aromatic rings, sp(3)-hybridized C-H bonds, and isocyanide triple bonds, respectively. We describe in detail how computed equilibrium lattice constants and cohesive energies may be affected by the input ground state wave functions and orbital energies, by the geometries of molecular monomers in the assemblies, and by the inclusion of zero-point energy contribution to the total energy. We find that the EXX/RPA perturbative approach provides an overall satisfactory, first-principles description of dispersion forces. However, binding energies tend to be underestimated, and possible reasons for this discrepancy are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.