Abstract

Anisotropic dipole polarizabilities of Tm(2F), Tm+2(2F), and Yb(1S) are calculated using the finite-field multireference averaged quadratic coupled cluster (MR-AQCC) (Tm and Tm+2) and RCCSD(T) (Yb) methods with small-core relativistic pseudopotentials ECP28MWB combined with the augmented ANO basis sets. The lanthanide atoms are strongly polarizable with the scalar part originating from the 6s electrons and the tensorial part from the open 4f shells. The adiabatic interaction potentials 2Sigma+, 2Pi, 2Delta, and 2Phi of Tm(2F)-He and Tm+2(2F)-He were examined by the multireference approaches, multireference configuration interaction and MR-AQCC, using the basis sets designed in the polarizability calculations. A closed-shell lanthanide system Yb(1S)-He was included for comparison. The Tm-He 2Sigma+, 2Pi, 2Delta, and 2Phi interaction potentials are very shallow and nearly degenerate (within 0.01 cm(-1)), with the well depths in the range of 2.35-2.36 cm(-1) at R=6.17 A. The basis-set saturated well depths are expected to be larger by ca. 25%, as estimated using the bond-function augmented basis set. The interactions of lanthanide atoms with He are one order of magnitude less anisotropic than those involving first-row transition metal atoms. The suppression of anisotropy is chiefly attributed to the screening effected by the 6s shell. When these electrons are removed as in the di-cation complex Tm+2(2F)-He, the potentials deepen to a thousand wave number range and their anisotropy is enhanced 500-fold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call