Abstract

We have carried out quantum Monte Carlo (QMC) calculations to study the interlayer interaction in a boron nitride (BN) bilayer. The binding energy, 81 meV/2BN after finite-size corrections, was found to be larger than that obtained by density functional theory (DFT) with local density approximation, and smaller than those using van der Waals density functionals, both by considerable amounts. The QMC calculated interaction beyond the equilibrium interlayer separation was found to have a longer-range behavior than all the available DFT schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.