Abstract

Two-dimensional semiconductors can be used to build next-generation electronic devices with ultrascaled channel lengths. However, semiconductors need to be integrated with high-quality dielectrics—which are challenging to deposit. Here we show that single-crystal strontium titanate—a high-κ perovskite oxide—can be integrated with two-dimensional semiconductors using van der Waals forces. Strontium titanate thin films are grown on a sacrificial layer, lifted off and then transferred onto molybdenum disulfide and tungsten diselenide to make n-type and p-type transistors, respectively. The molybdenum disulfide transistors exhibit an on/off current ratio of 108 at a supply voltage of 1 V and a minimum subthreshold swing of 66 mV dec−1. We also show that the devices can be used to create low-power complementary metal–oxide–semiconductor inverter circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.