Abstract

Photocatalytic CO2 reduction (PCR) is able to convert solar energy into chemicals, fuels, and feedstocks, but limited by the deficiencies of photocatalysts in steering photon-to-electron conversion and activating CO2, especially in pure water. Here we report an efficient, pure water CO2-to-CO conversion photocatalyzed by sub-3-nm-thick BiOCl nanosheets with van der Waals gaps (VDWGs) on the two-dimensional facets, a graphene-analog motif distinct from the majority of previously reported nanosheets usually bearing VDWGs on the lateral facets. Compared with bulk BiOCl, the VDWGs-rich atomic layers possess a weaker excitonic confinement power to decrease exciton binding energy from 137 to 36 meV, consequently yielding a 50-fold enhancement in the bulk charge separation efficiency. Moreover, the VDWGs facilitate the formation of VDWG-Bi-VO••-Bi defect, a highly active site to accelerate the CO2-to-CO transformation via the synchronous optimization of CO2 activation, *COOH splitting, and *CO desorption. The improvements in both exciton-to-electron and CO2-to-CO conversions result in a visible light PCR rate of 188.2 μmol g−1 h−1 in pure water without any co-catalysts, hole scavengers, or organic solvents. These results suggest that increasing VDWG exposure is a way for designing high-performance solar-fuel generation systems.

Highlights

  • Photocatalytic CO2 reduction (PCR) is able to convert solar energy into chemicals, fuels, and feedstocks, but limited by the deficiencies of photocatalysts in steering photon-to-electron conversion and activating CO2, especially in pure water

  • Bismuth oxychloride consists of a layered structure of [Cl–Bi–O2–Bi–Cl] monolayers that are stacked along the c-axis and interact through van der Waals forces (Supplementary Fig. 1)

  • Our prior works have demonstrated the incorporation of carbon nanoclusters into the [Bi2O2] interior—which attenuates Bi–O bonding—and this provides a further opportunity for enriching VDWGs36,37

Read more

Summary

Introduction

Photocatalytic CO2 reduction (PCR) is able to convert solar energy into chemicals, fuels, and feedstocks, but limited by the deficiencies of photocatalysts in steering photon-to-electron conversion and activating CO2, especially in pure water. In light of these encouraging observations, we sought to investigate the PCR performance of VDWGs-rich BiOCl. For this purpose, we used a reactor containing only the photocatalyst powder, pure water, and high-purity CO2 (Supplementary Fig. 26).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.