Abstract

van der Waals epitaxy (vdWE) of three-dimensional CdS thin films on both single-crystalline graphene/Cu(111)/spinel(111) and single-crystalline graphene/SiO2/Si substrates is achieved via thermal evaporation. X-ray and electron backscatter diffraction pole figures reveal that the CdS films are a Wurtzite structure with a weak epitaxy on graphene and accompanied with a fiber texture background. The epitaxial alignment between CdS and graphene is observed to be an unusual non-parallel epitaxial relationship with a 30° rotation between the unit vectors of CdS and graphene. A geometrical model based on the minimization of superlattice area mismatch is employed to calculate possible interface lattice arrangement. It is found that the 30° rotation between CdS and graphene is indeed the most probable interface epitaxial lattice alignment. The vdWE of CdS on graphene, transferrable to arbitrary substrates, may represent a step forward for the growth of quality CdS thin films on arbitrary substrates through a graphene buffer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.