Abstract

In this communication, we present results of theoretical studies of various systems where Van der Waals interaction plays a considerable role. In the first-principle calculations performed in the density functional theory framework we implement novel functionals accounting for Van der Waals forces and employ to the test cases of graphite and graphene layers. It turns out that this approach provides a solution to the long standing problem of overbinding between graphene layers in bulk graphite, giving the distance between the carbon layers in excellent agreement with experiment. In graphene bilayers, Van der Waals functionals lead to energetic barriers for A–B to A–A ordering of graphene bilayers that are by a factor of two smaller than the barriers obtained with standard functionals. It may be of crucial importance, particularly, if one uses atomistic ab initio methods as a starting point for multi-scale modeling of materials and for determination of effective potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.