Abstract

Synaptic vesicles in the brain harbor several SNARE proteins. With the exception of synaptobrevin2/VAMP2 (syb2) that is directly involved in vesicle fusion, the role of these SNAREs in neurotransmission is unclear. Here, we show that in mice while syb2 drives rapid Ca2+-dependent synchronous neurotransmission, the structurally homologous SNARE protein VAMP4 selectively maintains bulk Ca2+-dependent asynchronous release. At inhibitory nerve terminals, up- or down-regulation of VAMP4 causes a correlated change in asynchronous release. Biochemically, VAMP4 forms a stable complex with SNAREs syntaxin-1 and SNAP-25 that does not interact with complexins or synaptotagmin-1, proteins essential for synchronous neurotransmission. Optical imaging of individual synapses indicates that VAMP4 and syb2 trafficking show minimal overlap. Taken together, these findings suggest that VAMP4 and syb2 diverge functionally, traffic independently and support distinct forms of neurotransmission. These results provide molecular insight into how synapses diversify their release properties by taking advantage of distinct synaptic vesicle-associated SNAREs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call